samskivert: Euler 011

12 January 2008

Problem 011:

object Euler11 extends Application {
  val data = Array(
     8,  2, 22, 97, 38, 15,  0, 40,  0, 75,  4,  5,  7, 78, 52, 12, 50, 77, 91,  8,
    49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48,  4, 56, 62,  0,
    81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30,  3, 49, 13, 36, 65,
    52, 70, 95, 23,  4, 60, 11, 42, 69, 24, 68, 56,  1, 32, 56, 71, 37,  2, 36, 91,
    22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80,
    24, 47, 32, 60, 99,  3, 45,  2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50,
    32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70,
    67, 26, 20, 68,  2, 62, 12, 20, 95, 63, 94, 39, 63,  8, 40, 91, 66, 49, 94, 21,
    24, 55, 58,  5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72,
    21, 36, 23,  9, 75,  0, 76, 44, 20, 45, 35, 14,  0, 61, 33, 97, 34, 31, 33, 95,
    78, 17, 53, 28, 22, 75, 31, 67, 15, 94,  3, 80,  4, 62, 16, 14,  9, 53, 56, 92,
    16, 39,  5, 42, 96, 35, 31, 47, 55, 58, 88, 24,  0, 17, 54, 24, 36, 29, 85, 57,
    86, 56,  0, 48, 35, 71, 89,  7,  5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58,
    19, 80, 81, 68,  5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77,  4, 89, 55, 40,
     4, 52,  8, 83, 97, 35, 99, 16,  7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66,
    88, 36, 68, 87, 57, 62, 20, 72,  3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69,
     4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18,  8, 46, 29, 32, 40, 62, 76, 36,
    20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74,  4, 36, 16,
    20, 73, 35, 29, 78, 31, 90,  1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57,  5, 54,
     1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52,  1, 89, 19, 67, 48);
  val side = Math.sqrt(data.length);
  val veclen = 4;
  def inBounds (ex :Int, ey :Int) :Boolean = {
    ex >= 0 && ex < side && ey >= 0 && ey < side
  }
  def vector (x :Int, y :Int, dx :Int, dy :Int) :List[Int] = {
    List.range(0, veclen).map((idx) => data((y + dy*idx) * side + (x + dx*idx)));
  }
  var products = for {
    x <- List.range(0, side)
    y <- List.range(0, side)
    delta <- List(Array(1, 0), Array(0, 1), Array(1, 1), Array(-1, 1))
    if inBounds(x + delta(0)*(veclen-1), y + delta(1)*(veclen-1))
  } yield vector(x, y, delta(0), delta(1)).foldRight(1)(_*_);
  println(products.foldRight(0)(Math.max));
}

It's not the shortest solution in the world, but it makes up for it with generality.

We simply iterate over all elements of the matrix and compute the four element product going right, down, down right and down left. Since it doesn't matter which way you compute the product we don't need to compute up, left, up left or up right.

©1999–2022 Michael Bayne